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Abstract

This paper addresses the importance of the history term on the transient energy equation of particles. The physical

origin of this term is the diffusion of the transient temperature gradients around the sphere. The history term accounts

for the effect of all the previous temperature changes of the sphere to the current temperature change. The derivation

and analysis of the transient energy equation of rigid particles are presented. In order to solve numerically the transient

energy equation, three different fluid temperature fields (step, ramp and sinusoidal) are applied and the temperature of

the sphere is computed with and without the history term. The evaluation of the maximum deviation between these two

computations allows us to determine for each case the effect of the history term and, especially, when the history term

may be neglected. The final results of these computations allow several conclusions and recommendations on the

appearance, importance and significance of the history term.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The subject of heat and mass transfer from spheres

has many practical engineering applications such as

combustion, propulsion processes, chemical reaction,

mixing and separation processes, boiling and condensa-

tion processes, and environmental sedimentation. At low

Reynolds number flow (creeping flow), it is of impor-

tance in many extraction processes such as spray drying,

aerosol scrubbing and aerosol/meteorological studies.

The classical problem of heat transfer from a single

spherical particle moving in its surrounding fluid at low

Reynolds number has been the subject of numerous in-

vestigations. Most of the theoretical work is connected

with the case of steady-state heat transfer, in which the

temperature of the particle is maintained constant and

both the velocity and thermal fields around the particle

are constant with respect to time. However, in many

industrial applications the heat transfer between parti-

cles and the continuous phase is unsteady. The un-

steadiness is due to the heating or cooling of the

particles, bubbles and droplets and also to the time-

dependent nature of the external flow [3].

The first study on the transient rate of heat transfer

from a sphere was performed by Fourier [6] who used

his results to determine the age of the earth. In doing so,

he defined conductivity and set the foundations of the

field of heat and mass transfer. Carslaw and Jaeger [2]

extended Fourier�s ideas on the transient conduction

from a solid sphere and presented several different ap-

plications of transient heat transfer at very low Peclet

numbers. More recently, Cooper [4] and Brunn [1] ex-

amined two problems related to the heat conduction

from a sphere to an infinite medium, when the initial

temperatures of the sphere and the medium are different.

Most of the results on this subject were restricted to

specific thermal processes with practical applications,

such as step temperature change or sinusoidal temper-

ature variation [12]. A general expression for an arbi-

trary temperature field in the surrounding fluid or in the

interior of the sphere was not studied until recently by

Michaelides and Feng [10]. They obtained the first

*Corresponding author. Tel.: +1-504-865-5764; fax: +1-504-

862-8747.

E-mail address: emichael@tulane.edu (E.E. Michaelides).

0017-9310/03/$ - see front matter � 2002 Elsevier Science Ltd. All rights reserved.

PII: S0017-9310 (02 )00426-X

International Journal of Heat and Mass Transfer 46 (2003) 1575–1586

www.elsevier.com/locate/ijhmt

mail to: emichael@tulane.edu


complete analytical solution for the unsteady energy

equation at creeping flow conditions that correspond to

the transient conduction. They showed for the first time

that the transient energy equation, at creeping flow also

contains a history term, which is expressed mathemati-

cally by an integral. Physically, the unsteady heat

transfer from a sphere is influenced by the past thermal

history of the sphere as well as the temperature gradients

of the surrounding fluid [11,12].

The objective of this paper is to determine the effect

of the history term on the transient energy equation of a

sphere. Since the solution of the transient energy equa-

tion is rather complicated with the presence of the his-

tory term, it is useful to know if it is advisable or not to

neglect this term before solving this problem of heat or

mass transfer; and furthermore, if this term is neglected,

what is the error one should expect in the computations.

If the history term can be neglected, the transient en-

ergy equation, which is a first-order integro-differential

equation, becomes an ordinary first-order differential

equation and its solution may be obtained relatively

easily. On the other hand, if the history term is impor-

tant and must be retained, the computations are more

cumbersome and time consuming.

We have considered the transient heat transfer cases

related to three different fluid temperature processes:

step temperature change, ramp temperature change and

sinusoidal temperature change. The influence of the

history term has been determined by computing the

transient energy equation with and without the history

term. The calculations allow us to make conclusions and

recommendations on the importance of the history term

and, especially, under what conditions it must be re-

tained or may be neglected.

2. The transient energy equation for a sphere

2.1. The case of creeping flow, Pe � 1

The exact solution of the governing equation of heat

transfer can be obtained only for creeping flow condi-

tions (Pe � 1), that is, when the heat transfer is char-

acterized only by the transient conduction equation.

Michaelides and Feng [10] conducted a study for the

transient heat transfer from a solid sphere with uniform

temperature TsðtÞ. They derived the following expression

for the Lagrangian energy equation of a sphere, which is

present in an arbitrary fluid temperature field Tfðz; tÞ
with the initial condition Tsð0Þ ¼ T 0

f ð0Þ
��
z¼0

:

mscs
dTsðtÞ
dt

¼ mfcf
DT 0

f ðz; tÞ
Dt

����
z¼0

� 4pakf TsðtÞ
�

� T 0
f ðz; tÞ

��
z¼0

� 1

6
a2T 0

f ;jj
ðz; tÞ

����
z¼0

�
� 4pa2kf

�
Z t

0

d
ds TsðtÞ � T 0

f ðz; tÞ
��
z¼0

� 1
6
a2T 0

f ;jj
ðz; tÞ

���
z¼0

h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pafðt � sÞ

p ds

ð1Þ
where ms is the mass of the sphere, mf the mass of the

fluid in an equal volume as the one of the particle, cs the

Nomenclature

Latin symbols

a heat diffusivity

c specific heat capacity

erf error function

erfc complementary error function

k conductivity

m mass

Nu Nusselt number

Pe Peclet number

Q rate of heat transfer

r coordinate relative to particle

R radius of the fluid domain

Sl Strouhal number

t time

T temperature

u fluid velocity

x Eulerian coordinate system

z coordinates moving with the sphere

Greek symbols

a radius of the sphere

b ratio of the fluid to solid volumetric heat

capacities

q density

s dummy variable with units of time

sf characteristic time of fluid

h phase difference

r dummy variable dimensionless time

e phase angle (energy)

x dimensional frequency

Superscripts

� dimensionless

0 pertains to undisturbed field

Subscripts

f pertains to fluid

i vector component

jj Laplacian

s pertains to sphere

with with history term

without without history term
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specific heat capacity of the sphere and cf the one of the

fluid, is the radius of the sphere, kf is the conductivity

of the fluid, TsðtÞ is the temperature of the sphere,

T 0
f ðz; tÞ

��
z¼0

is the undisturbed temperature field of the

fluid evaluated at the center of the sphere, af is heat

diffusivity of the fluid, t is the time and s is a dummy

variable with units of time. It must be emphasized that

Eq. (1) is derived by the complete analytical solution of

the conduction equation in the presence of a sphere.

While the domain and mass of the sphere is finite and

restricted to the space 0 < r < a, the mass of the sur-

rounding fluid is by far greater, because the character-

istic dimension of the fluid L is assumed much greater

than the radius of the sphere a � L. Details on the

derivation of Eq. (1) may be found in [9,10].

From the above equation, the history term associated

with the process of heat transfer at creeping flow con-

ditions is as follows:

4pa2kf

Z t

0

d

ds
TsðtÞ � T 0

f ðz; tÞ
��
z¼0

� 1

6
a2T 0

f ;jj
ðz; tÞ

���
z¼0

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pafðt � sÞ

p ds

ð2Þ

It must be mentioned that although the study by Mi-

chaelides and Feng [10] was the first to point out the

existence of the history term, an allusion to this term for

a few very simple transient conduction problems has

appeared in some other studies including the book of

Carslaw and Jaeger [2]. They found that the solution for

the transient conduction with a step temperature change

is expressed in terms of the error function, which is

essentially an integral of the history of the process.

The energy equation is made dimensionless by using

the thermal timescale of the fluid sf ¼ a2qfcf=kf . Also, a

dimensionless parameter is introduced, b ¼ qfcf=qscs,
which is the ratio of the volumetric heat capacities. Since

the sphere is considered small compared to the fluid, the

Laplacian can be neglected. Hence, the dimensionless

energy equation becomes:

dT �
s

dt�
¼ b

dT 0�
f

dt�

����
z¼0

� 3b T �
s

	
� T 0�

f

��
z¼0




� 3bffiffiffi
p

p
Z t�

0

d
dr T �

s � T 0�
f

��
z¼0

h i
ffiffiffiffiffiffiffiffiffiffiffiffi
t� � r

p dr ð3aÞ

where r is a dummy variable defined as r ¼ s=sf and the

dimensionless initial condition for the temperature is:

T �
s ð0Þ ¼ T 0�

f ð0Þ
��
z¼0

ð3bÞ

Eq. (3a) is an integro-differential equation and is implicit

for the variable Ts. Its solution must involve an implicit

numerical method, which is always time consuming and

requires a great deal of CPU and memory. This equation

may be transformed to yield a second-order ordinary

differential equation, which is explicit in Ts. The trans-

formation eliminates the need for iterations in and re-

duces considerably the memory requirements.

The derivation of the second-order ordinary differen-

tial equation has been done by following a method by

Michaelides [8] for the history term applied to the equa-

tion of motion. The derivation is accomplished by taking

the Laplace transform of the first-order integro-differen-

tial equation (1), doing algebraic manipulations in the

Laplace domain and transforming back to the time

domain. The final expression thus derived is as follows:

a4q2
sc

2
s

k2
f

d2 Ts � T 0
f

��
z¼0

	 

dt2

þ a2qscs
kf

ð6� 9bÞ
d Ts � T 0

f

��
z¼0

	 

dt

þ 9ðTs � T 0
f

��
z¼0

Þ

¼ �a4q2
s c

2
s

k2
f

ð1� bÞd
2T 0

f

dt2

����
z¼0

� 3a2qscs
kf

ð1� bÞdT
0
f

dt

����
z¼0

þ 3ð1� bÞa
2qscs
kf

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2qfcf
kf

s Z t

0

d2T 0
f

ds2

���
z¼0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pðt� sÞ
p ds

þ 3ð1� bÞa
2qscs
kf

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2qfcf
ptkf

s
dT 0

f

dt

�������z¼0
t¼0

ð4aÞ

with initial conditions:

Tsð0Þ ¼ T 0
f ð0Þ

��
z¼0

ð4bÞ

and

dTsð0Þ
dt

¼ b
dT 0

f ð0Þ
dt

����
z¼0

ð4cÞ

The equation may be made dimensionless, by using

the characteristic time of the fluid sf and the parameter b:

1

b2

d2 T �
s � T 0�

f

��
z¼0

	 

dt�2

þ ð6� 9bÞ
b

d T �
s � T 0�

f

��
z¼0

	 

dt�

þ 9 T �
s � T 0�

f

��
z¼0

	 

¼ �ð1� bÞ

b2

d2T 0�
f

dt�2

����
z¼0

� 3ð1� bÞ
b

dT 0�
f

dt�

����
z¼0

þ 3ð1� bÞ
b

Z t�

0

d2T 0�
f

dr2

���
z¼0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pðt� � rÞ
p dr

þ 3ð1� bÞ
b

ffiffiffiffiffiffi
1

pt�

r
dT 0�

f

dt�

����� z¼0

t�¼0

ð5aÞ

with the dimensionless initial conditions:

T �
s ð0Þ ¼ T 0�

f ð0Þ
��
z¼0

ð5bÞ

dT �
s ð0Þ
dt�

¼ b
dT 0�

f ð0Þ
dt�

����
z¼0

ð5cÞ
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The only disadvantage of this equation is that it is a

second-order differential equation and that it contains

more terms than Eq. (3a). Since it is a second-order

equation, the question of numerical stability comes into

consideration. We have found out that the last equation

becomes numerically unstable for b > 2=3. In this case

one has to solve the original integro-differential equation

(1) or (3).

2.2. The case of small but finite Peclet number, Pe < 1

Feng and Michaelides [5] conducted an asymptotic

study on the heat transfer from a sphere at finite but

small Peclet numbers (Pe < 1) in the case of a step

temperature change. They have found out that at short

times from the inception of the process all energy ex-

change is confined to the vicinity of the particle and

conduction is the dominant mode of heat transfer. In

this time domain, they obtained the following expression

for the total rate of heat transfer and the Nusselt

number:

QðtÞ ¼ �4pðTs � T 0
f Þ � 4pðTs � T 0

f Þ
1ffiffi
t

p þ oðPe1þÞ ð6aÞ

and

NuðtÞ ¼ � QðtÞ
2pðTs � T 0

f Þ
¼ 2 1

�
þ 1ffiffi

t
p
�
þ oðPe1þÞ ð6bÞ

The rate of approach to steady state is proportional to

t�1=2, as expected in this purely diffusional process and

does not depend on Pe, which is a measure of the inertia/

advection of the sphere.

At long times after the commencement of the process,

heat transfer by advection becomes important, while

close to the surface of the sphere, conduction dominates.

In this case, close-form solutions for the heat transfer

may be obtained for specific processes: In the case of a

step temperature change for the fluid, and for the long-

time domain, the total rate of heat transfer and the

corresponding Nusselt number become:

QðtÞ ¼ � 4pðTs � T 0
f Þ � 4pðTs � T 0

f Þ
exp � Pe2

4
t

	 

ffiffiffiffiffi
pt

p

2
4

þ
ffiffiffiffiffiffiffi
Pe2

4

r
erf

ffiffiffiffiffiffiffi
Pe2

4

r
t

3
5þ oðPe1þÞ ð7aÞ

and

NuðtÞ ¼ 2þ 2
exp � Pe2

4
t

	 

ffiffiffiffiffi
pt

p

2
4

þ
ffiffiffiffiffiffiffi
Pe2

4

r
erf

ffiffiffiffiffiffiffi
Pe2

4

r
t

 !35þ oðPe1þÞ ð7bÞ

It is obvious that the rate of approach to the steady-

state solution is e�t t�1=2. The approach to steady state

during convection is faster than the approach during

the purely conduction mode, which is t�1=2, because

the thermal wake is well formed in the outer region

and is spreading by advection. The spread of the

thermal wake facilitates the exchange of energy in

the outer region of the fluid and, hence, accelerates the

approach to steady state. It must be pointed out that

similar results for the equation of motion of the sphere

at creeping flow conditions and at small but finite

Reynolds numbers were obtained by Lovalenti and

Brady [7].

Numerical calculations were performed to determine

the Nusselt number as functions of Pe in simple cases.

Fig. 1a shows the transient Nusselt number in the short

time domain in the case of sphere in an otherwise

quiescent fluid for Pe ¼ 0:25. The temperature of the

sphere undergoes a step temperature change at time

t ¼ 0. It is observed that Nu initially declines rapidly,

and then approaches the steady-state solution (Nu ¼ 2)

at a very slow rate. The solution at long-time domain is

shown in Fig. 1b, where it is apparent that the Nusselt

number approaches asymptotically the steady-state

value Nu ¼ 2:25. The last figure is based on expression

(7b).

3. Results and discussion

In order to deduce the effect of the history term

and its importance on the calculations we have made

several calculations on the influence of the history

term under different scenarios of fluid temperature

variation. We placed emphasis on the computations

with the creeping flow form of the energy equation for

two reasons: (a) the history term decays as t�1=2 and,

thus, persists longer, and (b) in the case of finite Pe,
the influence of the history/transient term is easier to

obtain by evaluating the various terms of the derived

energy equation, such as Eqs. (7a) and (7b). The

computations on the temperature of the sphere were

performed for the following cases of fluid temperature

variation:

• a step temperature change,

• a ramp increase of the fluid temperature,

• a sinusoidal temperature variation.

Whenever it was possible we solved the second-

order o.d.e. (Eq. (4a)) to obtain the variation of the

temperature of the sphere. Otherwise, (when Eq. (4a)

was unstable) we solved the integro-differential equa-

tion (1). In this case, the evaluation of the history

term was accomplished by using the following ex-

pansion [13]:

1578 M. Gay, E.E. Michaelides / International Journal of Heat and Mass Transfer 46 (2003) 1575–1586



Z nh

0

dT 0
f

drffiffiffiffiffiffiffiffiffiffi
t � r

p dr ¼ 2
ffiffiffi
h

p Xn
i¼1

dT 0
f

dt

 !
i

� ðn
h

� iþ 1Þ1=2 � ðn� iÞ1=2
i

ð8aÞ

where the average temperature change is given as:

dT 0
f

dt

 !
i

¼ 1

2

dT 0
f

dt

� �
i

�
þ dT 0

f

dt

� �
i�1

�
ð8bÞ

In all the computations, a fourth-order Runge–Kutta

technique was used. A variable time step was used in the

computations: Initially (t ¼ 0) a dimensionless time step

equal to 0.0001 was taken and this was gradually in-

creased to 0.01. There were no computational difficulties

associated with the calculation of the integral term, other

than the additional CPU time and memory usage. Spe-

cific details of the computations pertaining to the three

cases we examined are given in the following sections.

3.1. Step temperature change

In a spherical system of coordinates, the energy

equation of the fluid is:

oTf

ot
¼ af

o2Tf

or2

�
þ 2

r
oTf

or

�
ð9Þ

We assume that the center of the solid sphere is located

at r ¼ 0 and its radius is a. Also that the temperature of

the fluid undergoes a step temperature change of (di-

mensionless) unit magnitude at the far field, which is at

R ¼ 10a. From [2] we obtained the following expression

(b)

(a)

0.25

0.25

Fig. 1. (a) Nusselt number versus dimensionless time for the conduction solution at short time with a step temperature change for

Pe ¼ 0:25. (b) Nusselt number versus dimensionless time for the conduction solution in the long-time domain with a step temperature

change for Pe ¼ 0:25.

M. Gay, E.E. Michaelides / International Journal of Heat and Mass Transfer 46 (2003) 1575–1586 1579



for the dimensionless temperature field of the fluid that

undergoes a step temperature change, in the domain

0 < r < 10a:

Tfðt; rÞ ¼
R
r

X1
i¼0

erfc
ð2iþ 1ÞR� r

2
ffiffiffiffiffiffi
af t

p
� ��

� erfc
ð2iþ 1ÞRþ r

2
ffiffiffiffiffiffi
af t

p
� ��

ð10aÞ

By taking the limit at the center of the sphere, we obtain

the fluid temperature at r ¼ 0 in the absence of the

sphere (which is needed in the computations) as follows:

T �
f ðt�Þ

��
r¼0

¼ 2R

a
ffiffiffiffiffiffi
pt�

p
X1
i¼0

exp

  
� ð2iþ 1Þ2R2

4a2t�

!!
ð10bÞ

Using the last two equations we computed the re-

sulting temperature of the sphere with and without the

history term. Fig. 2, depicts the temperature of the fluid

at the far field and at r ¼ 0. It also depicts the temper-

ature of the sphere by using and by not using the history

term for b ¼ 0:01. It is observed that the addition of the

history term in the computations enhances the heat

transfer to the sphere and shortens the time to reach

equilibrium. In order to quantify the effect of the history

term we define the percentage deviation at time t be-

tween the response to the fluid with the history term and

the one without the history term:

deviation ð%Þ ¼
Tswith

� Tswithout

�� ��
jTf j

� 100 ð11Þ

The maximum percentage deviation obtained in the

computations has been recorded and plotted in Fig. 3 as

a function of the parameter b. It is observed that the

maximum deviation is less than 10% in all the cases and

that it only exceeds 2.5% in the range 0:0015 < b < 0:2,
which corresponds to the case of heat transfer from

drops and particles in gases as well as of particles in light

liquids. In these cases, neglecting the history term in the

computations will result in significant errors (greater

than 2.5%) on the temperature of the particle or droplet

and the total heat or mass exchange.

3.2. Ramp temperature change

In this case, the dimensionless temperature of the

fluid is driven by a ramp temperature change at the far

field, equal to kt. The temperature of the fluid in the

domain 0 < r < 10a is given in a dimensionless form by

the following expression [2]:

Tfðt; rÞ ¼ k t
�

� R2 � r2

6af

�
� 2kR3

afp3r

X1
i¼1

ð�1Þi

i3

� exp

�
� af i2p2t

R2

�
sin

ipr
R

� �
ð12aÞ

When the time becomes dimensionless by using the

thermal timescale of the fluid and a Taylor expansion is

made close to the origin, we obtain the following ex-

pression for the dimensionless fluid temperature at r ¼ 0

in the absence of the sphere:

T �
f ðt�Þ

��
r¼0

¼ ksf t�
�

� R2

6a2

�
� 2ksfR2

p2a2

X1
i¼1

ð�1Þi

i2

� exp

�
� i2p2a2t�

R2

�
ð12bÞ

We performed similar computations in this case as in

the case of the step temperature increase. The results are

plotted in Fig. 4 for b ¼ 0:01. As in the previous case, we

observe that the inclusion of the history term actually

Fig. 2. Response to the step temperature change of the fluid for b ¼ 0:01.
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enhances the heat transfer to the sphere and that the

temperature of the sphere follows faster the temperature

of the fluid. The maximum deviation observed is plotted

in Fig. 5, where it is noted that the overall error by

neglecting the history term does not exceed 8%. The

error is significant (more than 2.5%) in the range

0:0018 < b < 0:18, which again corresponds to particle/

droplet flows in gases or light liquids.

3.3. Sinusoidal temperature change

The response of the sphere surrounded by a fluid with

a sinusoidal temperature variation in the far field is

solved with zero initial temperature. The dimensionless

far field temperature (at R ¼ 10a) varies as sinðxt þ eÞ
where x is the frequency of the variation and e the

phase. The dimensionless temperature in the case of a

sinusoidal temperature change is given by Carslaw and

Jaeger [2] as follows:

Tfðt; rÞ ¼
RA
r

sinðxt þ e þ /Þ þ 2Rafp
r

�
X1
i¼1

ð�1Þiiðaf i2p2 sin e � xR2 cos eÞ
a2
f i4p4 þ x2R4

� exp
�af i2p2t

R2

� �
sin

ipr
R

� �
ð13aÞ

where

A ¼ coshð2x0rÞ � cosð2x0rÞ
coshð2x0RÞ � cosð2x0RÞ

� �1=2

;

/ ¼ arg
sinhðx0rð1þ iÞÞ
sinhðx0Rð1þ iÞÞ

� �
and x0 ¼

ffiffiffiffiffiffiffi
x
2af

r
ð13bÞ

When a dimensionless time is used, the following

expression is obtained for the variation of the fluid

temperature at the origin, in the absence of the

sphere:

T �
f ðt�Þ

��
r¼0

¼ 2x0R

ðcoshð2x0RÞ � cosð2x0RÞÞ1=2

� sinðSl  t� þ e þ /Þ

þ
X1
i¼1

2ð�1ÞiðaipÞ2ððaipÞ2 sin e � Sl  R2 cos eÞ
a4i4p4 þ Sl2R4

� exp
�ðaipÞ2t�

R2

 !
ð13cÞ

where

/ ¼ tg�1 sinhðx0RÞ cosðx0RÞ � coshðx0RÞ sinðx0RÞ
sinhðx0RÞ cosðx0RÞ þ coshðx0RÞ sinðx0RÞ

� �
;

x0 ¼ 1

a

ffiffiffiffiffi
Sl
2

r
and Sl ¼ x  sf ð13dÞ

Because the fluid field has its own timescale of variation

(x�1) a Strouhal number, Sl, appears in this case, which

is the ratio of the thermal timescale of the fluid to the

timescale of the variation of its temperature at the far

field. The Strouhal number is the inverse of the Stokes

number, which is normally used in the equation of

motion computations.

As in the previous two cases, we computed the tem-

perature of the sphere with and without the history term.

Fig. 6 shows the dimensionless fluid and sphere tem-

peratures (with and without the history term) for

b ¼ 0:01 and Sl ¼ 0:1. It is obvious that in both cases

the particle follows a sinusoidal temperature variation

Fig. 3. Maximum deviation for the step temperature change versus b.
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and that it lags the temperature of the fluid and the

amplitude of its temperature variation is lower. It is also

apparent that the inclusion of the history term in

the transient energy equation has an effect on both the

amplitude of the temperature and the phase lag of the

particle with respect to the fluid. For this reason, both

the maximum deviation for the amplitude and the phase

ratio are computed. The results are shown in Figs. 7–10,

where the maximum deviation in the calculations was

plotted on a function of b for two value of the Strouhal

number, Sl ¼ 0:001 and Sl ¼ 0:1. It is observed that

when the rate of variation of the fluid temperature is

very slow (Sl ¼ 0:001) neglecting the history term does

not influence significantly the computations. The vari-

ability of the fluid temperature field is slow enough for

the transient term to be insignificant in the computations

for the temperature of the sphere. In this case the pro-

cess may be considered quasi-steady. This is corrobo-

rated by the results depicted on Fig. 8, where it is shown

that the resulting phase change difference is also insig-

nificant.

However, when the Strouhal number is higher the

process cannot be considered quasi-steady, and the in-

clusion of the history (or any other transient) term plays

Fig. 4. Response to the ramp temperature change of the fluid for b ¼ 0:01.

Fig. 5. Maximum deviation for the ramp temperature change versus b.
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an important role. Figs. 9 and 10 show the maximum

amplitude deviation and the phase ratio for a sinusoidal

fluid temperature variation, when the Strouhal number

is equal to 0.1. It is obvious that the inclusion of the

history term plays an important role in the computa-

tions, especially in the case of the phase ratio, which is

defined in terms of the phase angle / as follows:

phase ratio ¼ /f � /with

/f � /without

ð14Þ

In the case of the sinusoidal variation of the fluid tem-

perature, it appears that the inclusion of the history term

in the computations is important at high values of the

Strouhal number and that the range of b that corre-

sponds to particle/droplet flows in gases is more sensitive

for the inclusion of this transient term.

From the physical point of view, as the temperature

of the fluid at the far field follows a sinusoidal variation,

the temperature of the sphere also follows a sinusoidal

variation. Consequently the sphere will heat when the

fluid temperature goes up and cool when the sinusoid

goes down. The phase difference signifies that the heat-

ing or cooling process will begin with a time difference

with respect to the fluid. The difference in the amplitude

creates a reduction of the amount of heat received or

rejected in the response of the sphere. For example, for

b ¼ 0:01 and Sl ¼ 0:1 (Fig. 6) the dimensionless amount

of heat given by the fluid is 0.8, then the amount of heat

Fig. 7. Maximum amplitude deviation for the sinusoidal temperature change (Sl ¼ 0:001) versus b.

Fig. 6. Response to the sinusoidal temperature change of the fluid for b ¼ 0:01 and Sl ¼ 0:1.
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received by the sphere is only 0.3 (with the history term)

or less (without the history term). It means that less heat

is transferred from the fluid to the sphere. When the

history term is taken into account, the phase difference

with the fluid is reduced and the amount of heat trans-

ferred is more, signifying an enhancement in the heat

transfer.

It appears that as the Strouhal number increases the

importance of the history term would increase too.

However, high values of Sl signify that the temperature

of the fluid in the far field heats and cools faster. The

rate of heating and cooling may become too fast for the

changes to be felt in the interior region, where the sphere

is. Actually, if the variation at r ¼ 10a is too fast, the

change at r ¼ 0 would be imperceptible and the sphere

would not be affected. We have found out that if the

Strouhal number is high (Sl > 0:2), the temperature of

the sphere does not follow a sinusoidal function and the

computations become meaningless. This is shown in Fig.

11, which has been computed with Sl ¼ 1 and where the

temperatures are shown after the passage of a significant

amount of time (t > 240). In this case, the process is too

fast for the temperature of the sphere to be dynamically

stationary and, therefore, the calculations of the ampli-

Fig. 8. Phase ratio for the sinusoidal temperature change (Sl ¼ 0:001) versus b.

Sl= 0.1

Fig. 9. Maximum amplitude deviation for the sinusoidal temperature change (Sl ¼ 0:1) versus b.
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tude ratio and phase difference are not physically

meaningful. A glance at the figure though convinces that

the inclusion of the history term plays a very important

role in the computations.

4. Conclusions

The exact derivation of the transient energy equation

of a sphere at creeping flow conditions reveals the

presence of a history term, which is analogous to the

history term of the equation of motion and accounts for

the effect of all the previous temperature changes of the

sphere. Thus, the transient energy equation becomes

a first-order integro-differential equation. By using a

transformation, this equation may be converted to a

second-order ordinary differential equation, which is

explicit in the temperature of the sphere.

Calculations were performed for three different fluid

temperatures changes: a step temperature change, a ramp

temperature change and a sinusoidal temperature

change. The analysis of the results showed that the his-

tory term plays an important role in the computations

involving mixtures of solids or drops in gases or light

liquids, where the thermal capacity ratio b is between

0.002 and 0.2. In the case of sinusoidal temperature

Fig. 10. Phase ratio for the sinusoidal temperature change (Sl ¼ 0:1) versus b.

Fig. 11. Response to the sinusoidal temperature change of the fluid for b ¼ 0:1 and Sl ¼ 1:0.
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variation, the history term is also very important in the

case of high Strouhal numbers. Results at the high values

of the volumetric heat capacity ratio, b, show that the

effect of the history term is not significant. Therefore, the

case of bubbly flows in liquids, one may neglect the his-

tory term in Lagrangian computations.
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